
1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2931874, IEEE
Transactions on Fuzzy Systems

1

Cluster-volume-based merging approach for
incrementally evolving fuzzy Gaussian clustering -

eGAUSS+
Igor Škrjanc

University of Ljubljana, Faculty of Electrical Engineering, Slovenia, igor.skrjanc@fe.uni-lj.si

Abstract—In this paper, a new dynamic merging approach
for incrementally evolving clustering is presented. This means
that the cluster partitions are incrementally learned on-line
from streams of data. The criterion of merging is based on
the comparison between the sum of volumes of two clusters
that fulfill the criteria of a minimal number of samples in the
cluster and the expected volume of the newly generated merged
cluster. The newly generated merged cluster is conducted by using
the weighted averaging of cluster centers and the calculation
of the joint covariance matrix from the covariance matrices of
the clusters. It has been shown that the proposed new evolving
algorithm eGAUSS+ together with the new merging concept is
very easy to implement, can work on higher-dimensional data
sets, can perform all necessary computation on-line, and can
produce reliable clusters.

Keywords: Data Stream, Evolving Clustering, Evolving
cluster models, Incremental learning, Dynamic merging, Vol-
ume of hyper-ellipsoids

I. INTRODUCTION

Mining of data streams in the context of supervised and
unsupervised learning techniques has recently become an
emerging research area. The methods from that area should
be able to process the data step-by-step, on-line in real-
time, update the parameters, and evolve the structure of the
identified model. These methods are especially suitable for
the processing of data that are continuously generated, are
very large, and of very high dimensions. These algorithms
are so-called evolving clustering algorithms, [1], [2], which
are sometimes also called incremental [3], [4], [5], single-
pass clustering methods [6], which means that the algorithm
is working by processing the data in a step-wise way, and
updating as well as evolving the structure and the parameters
[7], [8]. Many of these algorithms originate from classical
fuzzy clustering algorithms, such as the evolving Gustafson-
Kessel algorithm in [9], [10], and [11]. The possibilistic
approach to clustering proposed in [12], [13], [14], and [15] is
also a great inspiration for the further development of evolving
approaches based on density criteria, as proposed in [16], [17],
and in [18], in which the Cauchy data distribution is assumed
and [19], in which it is shown how different inner matrix
norms can be used to deal with different clustering problems.
The evolving principle based on principal component analysis
is presented in [20]. A generalized evolving fuzzy system in
an incremental single-pass manner, in which clusters appear
that are of different size and rotation, is presented in [21].

A survey about evolving fuzzy and neuro-fuzzy approaches in
clustering, regression, identification, and classification is given
in [22]. When dealing with evolving clustering, the problem of
clusters that are close and very similar frequently arises [23].
This is because the data arrive step-wise over time, and the
size of the cluster is not known in advance. The two clusters
can, therefore, move together and can be presented as only
one. In such situations, clusters should be merged to obtain
the minimum number of cluster partitions. This effect is called
”cluster fusion” and is usually caused by samples successively
filling the gaps between two or more clusters, which seem to
be disjointed at a former point of time in the data stream,
but later it turns out that they are not, and thus should be
merged to eliminate overlapping and redundant information.
The merging of clusters not only provides a more accurate
representation of the local data distributions but also keeps
evolving neuro-fuzzy systems more compact and thus more
easy to adapt and interpret.

Several different merging approaches are given in the
literature. The first approaches are connected to the basic
fuzzy clustering and the number of clusters. Starting with an
overestimation of the number of clusters in the data, similar
clusters are merged to obtain suitable partitioning. An adaptive
threshold for merging is proposed in [24], [25]. This merging
algorithm is guided by two geometric compatibility criteria:
the first condition states that the clusters should be close
enough, and the second one defines the compatibility of cluster
orientation. The algorithm requires a great deal of computation
and is, therefore, not suitable for the streaming data of higher
dimensions.

Another approach that is able to tackle the integration of a
merging concept into a k-means algorithm is given in [26], in
which merged partitions are compared with original partitions
based on the extended Xie-beni similarity index given in
[27]; however, for each complete data set, only one cluster
is merged; this means that the number of clusters is decreased
by one, with the application of the merging procedure.

The proposed merging algorithms in the incremental Gaus-
sian Mixture Models method (GMM) in [28] and [29] can
solve the merging problems in chunk mode; however, the
method is too slow for fast data streams in on-line learning
because of a grouping of Gaussians using Chernoff bound
method. The method is accelerated with a fidelity test of
Gaussian using a Kolmogorov-Smirnov test in [30], but it
results in an increased complexity because each new sample

1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2931874, IEEE
Transactions on Fuzzy Systems

2

creates a new Gaussian function.
The algorithm of Flexible Fuzzy Inference Systems (FLEX-

FIS+), given in [31], calculates the intersection of the member-
ship functions in each dimension. This is the basis of defining
the index of overlapping, which is then used to judge whether
whole clusters and, consequently, the rules, should be merged
or not. If the index is greater than a predefined threshold,
then the clusters are merged. Merging itself is conducted in
the antecedents by an extended variant of a recursive variance
formula and, consequently, by exploiting Yager’s participatory
learning concept [32] to resolve possibly conflicting rules
properly. The calculation of intersections in all dimensions
is computationally demanding and not transparent, especially
when dealing with higher dimensions.

In Generalized Smart Evolving Fuzzy Systems (GS-EFS),
introduced in [33], two merging criteria, the touching and ho-
mogeneity condition, are used to decide whether two clusters
should be merged. This means that the angles between the
hyper-planes that define the local models should not be too
small, and their joint volume should not expand too much.
The calculation of touching criteria in all dimension is time-
consuming and requires more predefined thresholds.

The evolving Fuzzy Model (eFuMo) algorithm, given in
[10], merges clusters based on the normalized distance be-
tween their centers. The distance is calculated based on the
Mahalanobis measure. The parameters of the merged cluster
are initialized by a weighted average [34] or using a normal
average, such as in [35], while the merged covariance matrix
can be defined as proposed in [36]. The three conditions for
merging in the eFuMo algorithm are: the angle condition, the
correlation condition, and the distance ratio condition. Two
clusters are merged if they fulfill one of these conditions.
The algorithm becomes nontransparent for higher-dimensional
problems, slow, and also the number of threshold parameters
is increased.

The described merging approaches from the literature are
based on geometric criteria that indicate the distances of
cluster centers, the orientation of two close clusters, and
overlapping. Some of them are quite complicated [10], [24],
[25], very computationally intensive [10], [24], [25], [28], [29],
[31], [33], can merge only two clusters at once [26], or have
several conditions with predefined thresholds to be fulfilled for
merging [10], [35].

The cluster merging proposed in this paper has overcome all
the described weaknesses of the merging approaches known
from the literature. It is based on the volume of clusters,
which are calculated from the cluster covariance matrices. The
method is proposed for an incremental on-line clustering and is
also suitable for fast learning demands, because after each new
sample only the clusters that are activated with membership
degrees higher than required are checked for whether they
should be merged or not. The proposed merging approach is
designed to be computed in parallel. The method is simple,
transparent, and easy to understand, with only one threshold
parameter that has a very strong meaning, suitable for higher
dimensions; it can merge more than two clusters at once, is
computationally undemanding and, therefore, is very fast.

This paper is organized as follows: in the beginning, the

reasons and requirements for merging techniques in evolving
neuro-fuzzy systems are presented; in Section II, the Gaussian
probability density distribution for modeling from data streams
with recursive computation of cluster parameters, evolving
Gaussian clustering, data partitioning, adding new clusters,
adapting clusters with new sample, and merging the clusters
are given. In Section III, some examples of that proposed
method are given for clustering problems and for regression.
After these examples, in Section IV, some classical benchmark
examples and comparisons with some batch clustering meth-
ods are presented and discussed. At the end, the conclusion is
given.

II. GAUSSIAN PROBABILITY DENSITY DISTRIBUTION FOR
CLUSTERING FROM DATA STREAMS

In our approach, the modeling from data streams is based
on Gaussian probability distribution.

A. Gaussian probability density distribution

The univariate Gaussian probability density, is in general,
defined as:

fu(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (1)

where µ and σ2 stand for the mean value and the variance
of the data set of variable x. For the multivariate Gaussian
probability density with m measured variables, the data sample
is written as z = [z1 z2 · · · zm]

T , the mean values of data sam-
ples inside the same cluster are written as µ = [µ1 µ2 · · ·µm]

T

and the covariance matrix of the corresponding data set as Σ.
The Gaussian probability density of the measured sample at
the time instant k, denoted as z(k), is defined as follows:

fm(z(k), µ,Σ) =
1

|2πΣ| 12
e−

1
2 (z(k)−µ)TΣ−1(z(k)−µ) . (2)

The unnormalized multivariate Gaussian density of the
current sample z(k) is further called ”typicality” and is defined
as follows

γ(k) = e−d
2(k)

where
d2(k) =

1

2
(z(k)− µ)TΣ−1(z(k)− µ) , (3)

stands for the Mahalanobis distance, where

µ =
1

n

n∑
i=1

z(i) , (4)

defines the center of the cluster, z(i) defines the ith sample
in the cluster, and n stands for the number of samples in the
cluster. The Σ denotes the covariance matrix of the observed
cluster, which is, in the matrix form, defined as follows:

Σ =
1

n− 1
(Z − EM)T (Z − EM) , (5)

where Z stands for the data matrix of dimension n × m,
ZT = [z(1), ..., z(n)], M stands for the matrix M =
diag(µ1, ..., µm) and E stands for the matrix of dimension
n×m with all elements equal to 1.

1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2931874, IEEE
Transactions on Fuzzy Systems

3

The covariance matrix can be written in its singular value
decomposed form as

Σ = PΛPT , (6)

and, therefore, the Mahalanobis distance from Eq. 3 becomes
as follows:

d2(k) =
m∑
i=1

1

λi
(z(k)− µ)T pi · pTi (z(k)− µ) (7)

where pi stands for the ith eigenvector and λi for the ith
eigenvalue of the covariance matrix Σ, which defines the shape
of the cluster. This shows that the Mahalanobis distance is the
sum of normalized distances of the current data sample from
the center of the cluster in the direction of the eigenvectors.
The distances are normalized with corresponding eigenvalues.
The benefit of using the Mahalanobis distance is to describe
the hyper-elliptically shaped cluster. The size and the shape
of the hyper-ellipsoid depend on the covariance matrix of
the cluster [37]. The volume of the hyper-ellipsoid in m
dimensional hyper-space is defined as follows:

V =
2πm/2

mΓ(m/2)
Πm
i=1λi, (8)

where Γ stands for the gamma function. This means that the
volume of the clusters in a certain hyper-dimensional domain
depends on the product of the eigenvalues of the cluster
covariance matrix.

The jth cluster in the form of hyper-ellipsoids is fully
represented with the triplet (µj ,Σj , nj).

B. Recursive computation of cluster parameters
The concept of evolving algorithms requires the calculation

of typicalities on-line in a recursive manner. In the proposed
approach, the observed measured sample is completely as-
signed to the cluster with the maximal typicality, if this
typicality overcomes the predefined minimal value. This means
that the number of samples in the cluster is incremented,
and the cluster mean and the covariance matrix are adapted.
Therefore, in our notation, the mean of the jth cluster with nj
samples is denoted as µnjj , and Σ

nj
j denotes the corresponding

covariance matrix.
When a new sample z(k) is available, the mean and the

covariance matrix of the cluster with maximal typicality are
updated recursively. The update is done in the following steps.
First, the difference between the current sample and the current
mean value is calculated:

ej(k) = z(k)− µnjj . (9)

Next, the mean is updated

µ
nj+1
j = µj

nj +
1

nj + 1
ej(k). (10)

After that, the states of the unnormalized covariance matrix
are computed as:

S
nj+1
j = S

nj
j + ej(k)

(
z(k)− µnj+1

j

)T
(11)

and the covariance matrix is then obtained as:

Σ
nj+1
j =

1

nj
S
nj+1
j . (12)

C. Evolving Gaussian Clustering
The evolving strategies strongly depend on the nature of
1) Data clustering: When a new incoming sample z(k) is

available, the typicalities to all existing clusters (i = 1, ..., c, c
is the number of current micro-clusters and clusters together)
are calculated based on the Euclidean distance,

γi(k) = e−d
2
i (k) , (13)

with
d2
i (k) = (z(k)− µi)T (z(k)− µi) , (14)

if the number of samples in the set ni is less than Nmax, and
based on the Mahalanobis distance

d2
i (k) = (z(k)− µi)TΣ−1(z(k)− µi) , (15)

if the number of samples in the set ni is greater than Nmax.
This is to overcome the singularity problem that may appear
when calculating the inverse of the covariance matrix of the
cluster with too few data samples.

The Mahalanobis distance is used to detect the hyper-
ellipsoidal forms and has the ability to rotate them. This means
that the clusters become much more flexible and have much
higher approximative ability.

The sample is assigned to the cluster (micro-cluster or
cluster) with the highest typicality, denoted as γj(k), if
γj(k) > Γmax, where Γmax stands for the threshold of
maximal typicality. The threshold is defined as follows

Γmax = e−d
2
max(k) (16)

where dmax stands for maximal hyper-radius, which defines
the resolution of the problem and should be defined according
to the observed data in the following way

dmax = min
i

(
max zi −min zi

2Nr

)
, i = 1, ...,m , (17)

where Nr stands for the quantization number, which is one of
the tuning parameters.

2) Adding new clusters: When a new sample is available,
the typicalities of this sample to all existing clusters are
calculated, and then the cluster with the maximal typicality of
the sample is denoted as cluster j. If this maximal typicality is
lower than the defined maximal threshold, then a new cluster
is formed and initialized with this sample. This means

γj(k) < Γmax (18)

where Γmax stands for the user-defined maximal typicality
threshold. By adding a new cluster, the current number of
clusters c is incremented, the number of elements in the cluster
is initialized to nc = 1, and the center and the covariance
matrix of the cluster are initialized to µc = z(k) and Σc = 0,
respectively.

3) Adapting clusters with a new sample: If the maximal
typicality of the current sample to the existing clusters is
greater than the defined threshold,

γj(k) > Γmax , (19)

the sample is assigned to the cluster with maximal typicality,
and the mean and the covariance matrix are adapted, as given
in Eqs. 9, 10, 11, 12.

1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2931874, IEEE
Transactions on Fuzzy Systems

4

4) Merging clusters: In some cases, especially when the
samples come to the learning algorithm randomly from differ-
ent classes and are very dispersed, the algorithm usually cre-
ates more clusters than needed. The proposed basic evolving
concept assumes a constant cluster volume measure to form
new clusters, and this results in clusters of similar volume.
Therefore, instead of adaptive cluster volume measure, an
efficient merging approach that merges similar clusters that are
close together is proposed. In this way, it decreases the number
of clusters and simplifies the model structure. This means that
the obtained structure can have very different clusters with
very different volumes after merging.

For every cluster pair (i, j) with a triplet (µi,Σi, ni) and
(µj ,Σj , nj), the estimated joined triplet (µij ,Σij , nij) is
calculated. The number of data samples in the joined cluster
and the joined cluster center are respectively equal to

nij = ni + nj , (20)

and
µij =

niµi + njµj
nij

. (21)

The matrix of data samples for the joint cluster is now ZTij =[
ZTi ZTj

]
. The calculation of the covariance matrix for the

joint cluster is then written as follows

Σij =
1

nij − 1

(
ZTi Zi + ZTj Zj −MT

ijE
T
ijEijMij

)
. (22)

where
ZTi Zi = (ni − 1)Σi +MT

i E
T
i EiMi , (23)

and
ZTj Zj = (nj − 1)Σj +MT

j E
T
j EjMj . (24)

This means that the covariance matrix of the joint cluster is
calculated using Eqs. 20, 21, 22, 23, and 24. The proposed
calculation enables the exact calculation of the joint cluster
covariance matrix without storing the old data sample. The
only information needed is the triples of cluster parameters.

The compactness and similarity or overlapping of two
clusters (i, j) can be measured by calculating the ratio between
the joined volume and the sum of both cluster volumes as
follows

κij =
Vij

Vi + Vj
. (25)

The ratio is called ”the overlapping” and is calculated for all
possible pairs of clusters that are activated with a typicality
that is higher than the required activation threshold ΓACT . The
activation typicality is usually defined as ΓACT = 1

4ΓMAX .
The set of all indexes of clusters that are activated are denoted
as A and defined as follows:

A = {j : γj > ΓACT , j = 1, ..., c} (26)

The most overlapped clusters are those with the minimal
overlapping ratio, which should be found as follows

κi∗j∗ = min
i,j

κij , i, j ∈ A, (27)

and the corresponding clusters are

(i∗, j∗) = argmin
i,j

κij , (28)

If the minimal ratio is less than the predefined joint threshold
value κjoin, the clusters are merged. The number of clusters is
therefore decreased, c← c−1, and the corresponding clusters
triplets are updated.

The complete merging algorithm is shown in Alg. 1.

Algorithm 1 Merging clusters.

1: Choice of κjoin
2: Initialization: merge = 1
3: while merge == 1

4: Computation of Vi = 2πm/2

mΓ(m/2) Πm
j=1λ

i
j , i ∈ A,

5: where λij stands for the jth eigenvalue of Σi

6: For every i, j ∈ A, i 6= j, compute

7: Σij = 1
nij−1

(
ZTi Zi + ZTj Zj −MT

ijE
T
ijEijMij

)
,

8: the volume Vij , and overlapping κij =
Vij

Vi+Vj
.

9: Find minimal ratio κi∗j∗ = argmini,j κij ,

10: if κi∗j∗ < κjoin
11: Merge clusters i∗ and j∗ in (Σnew, µnew, nnew)
12: c← c− 1
13: merge = 1
14: else
15: merge = 0
16: end

17: end

The complete evolving Gaussian clustering algorithm is
shown in Alg. 2.

D. Estimation of the local model parameters

In the case of regression problems, the nonlinear mapping
that maps a compact set from the input space of arbitrary
dimension to the output space of the first dimension can
be described by a number of approximators. Quite often, a
Takagi-Sugeno model is used. The approaches in which the
structure of the model is constant and the parameters of the
model θj are adapted on-line are very well known.

Simultaneous model structure and parameter identification
have also received a great deal of attention in the literature
recently. One possible approach is to cluster the input-output
data space and then identify the model parameters θj from
the clusters, i.e. by the singular value decomposition of the
covariance matrices of the clusters. This approach will be
given in more detail next.

The measured data vectors are composed of the input
vector u, which could be of an arbitrary dimension, and the
corresponding output y. All the information about the data
lies in the covariance matrices of the corresponding clusters
formed in the input-output data space. It is assumed that
the input-output data lie along the hyper-surface representing
the input-output mapping. This assumption is usually true
for a large class of problems when dealing with regression
problems. Due to the nature of the processes, disturbances,
measurement noise, parasitic disturbances and other sources
of errors, the data do not lie exactly on the surface but are

1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2931874, IEEE
Transactions on Fuzzy Systems

5

Algorithm 2 Algorithm of Evolving Gaussian Clustering.

1: Choice of Γmax or Nr, Nmax
2: Initialization:
3: c← 1, µc ← z(1), k ← 1
4: repeat k ← k + 1
5: for i = 1 : c
6: if ni < Nmax
7: d2

i (k) is the Euclidean distance
8: else
9: d2

i (k) is Mahalanobis distance
10: end
11: Calculation of typicality γi(k) = e−d

2
i (k)

12: end
13: Choice of maximal typicality j = argmaxi γi(k)
14: if γj(k) ≥ Γmax
15: Update of cluster j with new sample
16: ej(k)← z(k)− µj
17: µj ← µj + 1

nj+1ej
18: Sj = Sj + ej(k)(z(k)− µj)T
19: nj ← nj + 1
20: else
21: Add and initialize new cluster
22: c← c+ 1
23: nc ← 1
24: µc ← z(k)
25: end
26: Merging clusters
27: until k > N

spread in the vicinity of the hyper-surface. By analyzing the
covariance matrices of the clusters, the models are obtained
in an explicit form.

The idea originates from the definition of the hyper-plane
equation in an implicit form with the normal vector of the
hyper-plane and the point lying on the hyper-plane. The
normal vector nj to the hyper-surface is orthogonal to the
tangential hyper-plane in the center of the cluster µj . This
tangential hyper-plane represents the local linear model and
can be obtained in the implicit equation as follows

(z − µj)T nj = 0 (29)

The normal vector is defined as

nj = prj (30)

where prj denotes the first eigenvector of the covariance matrix
Σj that has an eigenvalue close to zero (close to noise vari-
ance). For example, if there is one regressor in the regressor
matrix that is linearly dependent on another regressor, the qth
eigenvalue should be ≈ 0 and the (q− 1)th eigenvalue should
reflect the noise. Therefore, in this case, r = q − 1.

In the case of regression problems, the regressors are
usually very carefully chosen, meaning that they are linearly
independent, and the excitation of the process is adequate. In
this way, the rank of the current covariance matrix is q − 1,
which means that only one eigenvalue of the matrix is close to

zero (close to noise variance). In this case, the normal vector
nj is equal to the latent eigenvector pqj .

Because of the nonlinear nature of the data, the normal
vector to the hyper-surface changes from one operating point
to another. In the context of fuzzy approximators, the normal
vector in a certain operating point is obtained by a linear
combination of individual normal vectors associated with
individual clusters. The gains of the linear combination are
obtained from the typicality or membership degree of the
individual clusters. Here, the typicalities associated with the
clusters are used. This leads to the following estimation of the
model output:

y(k) =

∑c
j=1 γj(k)yj(k)∑c

j=1 γj(k)
(31)

where c stands for the number of clusters. The problem here
arises because the typicality γj(k) depends on the data sample
z(k), which is not known in the case of the usual use of the
model. More precisely, the first part of z (the input vector u)
is known, but the output y is unknown. This problem can be
solved by projecting the typicality function to the input space
or by replacing the output value by the jth local model output
as follows:

z̄Tj (k) =
[
uT (k) ȳj(k)

]
(32)

The typicality can be then calculated as follows

γj(k) = e−
1
2 (z̄j(k)−µj)T (Σj)

−1(z̄j(k)−µj) (33)

and this projected membership function is called Zj .

III. EXAMPLES

In this section, the results of the algorithm are shown on
simple examples of clustering and regression problems.

A. Clustering

The test of the evolving Gaussian clustering algorithm was
first done using the artificial data of two dimensions, in
which the data come randomly from three different stochastic
processes. The first process generates the following data
z11(k) = N (0, 1) and z12(k) = z11(k) +N (0, 0.8), with 250
data samples from this process. With N (µ, σ), the Gaussian
normal noise is described, where µ stands for the mean
value, and σ for the standard deviation of white noise. The
second process generates the data with the following values
z21(k) = N (0, 1) and z22(k) = −z21(k) + N (8, 0.85), with
100 data samples, and the third process generates the data
z31(k) = N (−1.5, 0.5) and z32(k) = −z32(k) + N (4, 0.5),
with 50 data samples. The data stream is shown in Fig. 1,
where it is evident that the data are coming randomly. The
algorithm was initialized with the following tuning parameters:
the parameter κjoin = 1.0, the maximal number to use the
Euclidean distance measure is Nmax = 4, the initial grid is
defined by Nr = 4; this means that Γmax = 0.66, and the
clusters with less than two samples are removed. The data
samples in the final situation and final clusters with centers and
3σ contour are shown in Fig. 2. The contours are drawn for at
least 4 samples in a cluster. Changing the merging parameter

1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2931874, IEEE
Transactions on Fuzzy Systems

6

0 100 200 300 400
−5

0

5

k

z
1

0 100 200 300 400
−10

0

10

20

k

z
2

Fig. 1. Random data stream from three different stochastic processes.

−4 −3 −2 −1 0 1 2 3
−2

0

2

4

6

8

10

12

14

z1

z
2

Fig. 2. The data and final clusters with centers, 3σ contour, and κjoin = 1.0.

to κjoin = 1.4 means much less restrictive merging criteria
and results in just three clusters, as shown in Fig. 3. In Fig. 4,
the time course of the cluster number is presented, in which
red indicates the number before merging and black the number
of clusters after the merging procedure. It is shown that the
maximal number of detected clusters was 14, and it dropped
to 3 at the end.

B. Clustering for switching process data

In the second test, a switching linear process was studied.
The data stream is formed as follows: first, the independent
variable z1(k) = N (0, 1) of n = 200 samples is generated.
Then the switch variable s(k) = N (0, 1) is generated. The
value of the dependent variable depends on the switching
value. If s(k) > 0 then z2(k) = z1(k) + N (0, 0.05), else
z2(k) = N (0, 0.05). The data stream is shown in Fig. 5,
where it can be clearly seen that the data are randomly coming

−3 −2 −1 0 1 2 3
−4

−2

0

2

4

6

8

10

12

z1

z
2

Fig. 3. The data and final clusters with centers and 3σ contour, and κjoin =
1.4.

0 100 200 300 400
0

2

4

6

8

10

12

14

k

c

Fig. 4. The time course of the number of clusters.

from these two processes. The algorithm was initialized with
the following tuning parameters: the parameter κjoin = 1.1,
the maximal number to use the Euclidean distance measure
equals Nmax = 4, and the initial grid is defined by Nr = 12.
The data samples in the final situation and final clusters with
centers and 3σ contour are shown in Fig. 6. Next, the change
of merging parameter to κjoin = 1.4 is realized. In that case,
the clusters are merged even when the overlapping is smaller;
therefore, the number of clusters is much lower, as shown in
Fig. 7. In Fig. 8, the time course of the number of clusters
is presented, where red indicates the number before merging
and black the number of clusters after the merging procedure.
It is shown that the clustering at the beginning is rather fine
and, at the end, only the natural clusters are obtained.

1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2931874, IEEE
Transactions on Fuzzy Systems

7

0 50 100 150 200
−5

0

5

k

z
1

0 50 100 150 200
−5

0

5

k

z
2

Fig. 5. Random data stream from three different stochastic processes.

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

z1

z
2

Fig. 6. The data and final clusters with centers, 3σ contour, and κjoin = 1.1.

C. Clustering for regression

In the example of using the proposed algorithm in regression
problems, the data stream is formed as follows: first, the
independent variable z1(k) = N (0, 1) of n = 400 samples is
generated. The value of the dependent variable is a nonlinear
function, z2(k) = 0.4z3

1(k) +N (0, 0.2).
The algorithm is initialized with the following tuning pa-

rameters: the parameter κjoin = 1.25, the maximal number to
use the Euclidean distance measure is Nmax = 5, the initial
grid is defined by Nr = 4, and the minimal number of samples
in a cluster to remove it is defined as Nmin = 4. The data
samples in the final situation and final clusters with centers
and 3σ contour are shown in Fig. 9. The removed clusters are
shown only with centers of clusters.

Changing the merging parameter to κjoin = 0.95, the
clusters are merged with more volume overlapping. In Fig. 10,
the result with more clusters is shown.

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

z1

z
2

Fig. 7. The data and final clusters with centers and 3σ contour, and κjoin =
1.4.

0 50 100 150 200
0

5

10

15

20

k

c

Fig. 8. The number of clusters.

The merging parameter κjoin = 1.8 results in merging with
less volume overlapping, therefore with fewer final clusters,
which is shown in Fig. 11.

The clusters are defined by the center µj and the covariance
matrix Σj . In regression problems, local linear models must
also be identified, either by the recursive least-squares method
or by defining the hyper-plane that spans the data. The results
of this approach are shown next.

The approximation model in Takagi-Sugeno form, for ex-
ample, from Fig. 11, is now described as follows

R1 : if z1 is Z1 then z2 = 4.47z1 − 10.33 (34)
R2 : if z1 is Z2 then z2 = 0.41z1 + 0.05 (35)
R3 : if z1 is Z3 then z2 = 3.76z1 − 8.36 (36)

1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2931874, IEEE
Transactions on Fuzzy Systems

8

−4 −2 0 2 4
−25

−20

−15

−10

−5

0

5

10

15

z1

z
2

Fig. 9. The data and final clusters with centers and 3σ contour, and κjoin =
1.25.

−3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

z1

z
2

Fig. 10. The data and final clusters with centers, 3σ contour and, κjoin =
0.95.

IV. BENCHMARK EXAMPLES AND COMPARISONS

In general, the proposed method is compared to multi-
pass clustering methods, such as LOLIMOT (LOLI) [38],
HILOMOT [39] (HILO), SUHICLUST [40], [41] (SUHI) and
FUZZYID [42]. The comparison to multi-pass methods and
not to single-pass methods is done because the former usually
yields better results. The methods were compared according to
the number of local models (#LMs), the normalized root mean
square error in the case of learning data set (NRMSEL), the
normalized root mean square error in the case of testing data
set (NRMSET), and the computation time in seconds (t[s]).
The normalized root mean square error (NRMSE) is defined

−3 −2 −1 0 1 2 3
−10

−5

0

5

10

15

z1

z
2

Fig. 11. The data and final clusters with centers, 3σ contour, and κjoin =
1.8.

as follows:

NRMSE =

(
1
N

∑N
k=1(y(k)− ym(k))2

1
N

∑N
k=1(y(k)− y)2

) 1
2

, j = 1, ..., r,

y =
1

N

N∑
k=1

y(k)

(37)

which means that the sum of square errors between the
measured variable y(k) and the modelled variable ym(k) is
normalized according to the variance of the measure variable.
The methods were tested on a laptop with an i7, 2.9 GHz
processor and 16GB RAM.

All the results are presented in the form of tables, in which
the first column of the table represents the method’s name.
In the second column follows the number of generated local
models. The third column represents the error on the learning
set and the fourth the error on the testing set. In the fourth
column, the computation time is given.

A. Static examples

Three examples are chosen for the comparison of static
problems: the MARS 1 problem [43], the prediction of the
Mackey-Glass time series [44], and the Hyperbola-benchmark
[41].

1) The MARS 1 example: The MARS 1 is the function
given as follows:

y =
2ef1

ef2 + ef3
(38)

where f1 = 8((u1−0.5)2+(u2−0.5)2), f2 = 8((u1−0.2)2+
(u2 − 0.7)2) and f3 = 8((u1 − 0.7)2 + (u2 − 0.2)2).

The size of the learning set is 900 samples, for which u1 and
u2 are randomly generated from a uniform distribution. The
validation data also has 900 samples; however, in this case, u1

and u2 are equally distributed from zero to one, creating a grid.

1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2931874, IEEE
Transactions on Fuzzy Systems

9

TABLE I
RESULTS FOR MARS PROBLEM

Method #LMs NRMSEL NRMSET t[s]
eGAUSS+ 5 0.0327 0.0422 < 1

LOLI 20 0.0495 0.0686 ≈ 3
LOLI C# 11 0.0452 0.0528 ≈ 1

HILO 6 0.0489 0.0502 ≈ 4
SUHI 9 0.0474 0.0524 ≈ 4

FUZZYID 25 0.0567 0.0534 < 1

TABLE II
RESULTS FOR MG SERIES PREDICTION PROBLEM

Method #LMs NRMSEL NRMSET t[s]
eGAUSS+ 24 0.0481 0.0621 ≈ 5

LOLI 31 0.1362 0.1562 ≈ 6
LOLI C# 31 0.0498 0.0649 ≈ 20

HILO 30 0.0478 0.0618 ≈ 26
SUHI 29 0.0477 0.0577 ≈ 197

FUZZYID 81 0.059 0.0771 ≈ 17

The goal is to achieve an NRMSEL of 0.05. The global least-
squares method is used to estimate the local model parameters
for all fuzzy methods. The obtained results are presented in
Table I. In the case of the eGAUSS+ method, the results are
obtained with the parameter κjoin = 1.3.

2) Mackey-Glass time series: The chaotic time series [44]
is generated from the Mackey-Glass (MG) differential delay
equation defined by the following equation:

z(t) =
0.2z(t− τ)

1 + z10(t− τ)
− 0.1z(t) (39)

where the initial condition and τ are set as z(0) = 1.2 and
τ = 17. The aim is to use past values of z to predict a future
value of z. The value of the signal is predicted 85 steps ahead,
based on the values of the signal at the current moment, and
6, 12, and 18 steps back:

y(k) = [z(k + 85)]

uuu(k) = [z(k − 18) z(k − 12) z(k − 6) z(k)]
(40)

The training set is comprised of data points in the interval
k ∈ [201, 3200] and the validation set from points in the
interval k ∈ [5001, 5500]. The obtained results are presented
in Table II. Very good performances were obtained with
eGAUSS+, LOLI C#, and SUHICLUST. The best normalized
root-square error (NRMSET) is, in this case, obtained with
the SUHICLUST method; however, that method produced
five more local models than eGAUSS+ did, and the learning
time with SUHICLUST is considerably longer. The results
with the eGAUSS+ method are obtained with the parameter
κjoin = 1.25.

3) Hyperbola example: In this example, the goal is to
model the Hyperbola function:

y =
1

0.1 + 1
p

∑p
i=1(1− ui)

(41)

The tests are made for 1-, 4-, 7-, and 10-D input space.
The inputs are randomly generated from an interval [0, 1].
For learning, 900 samples are used, and 2000 samples for

TABLE III
RESULTS FOR HYPERBOLA PROBLEM (NUMBER OF LOCAL MODELS)

1-D 4-D 7-D 10-D
Method #LMs

eGAUSS+ 4 4 3 3
LOLI 5 22 32 29

LOLI C# 4 10 14 18
HILO 4 4 4 4
SUHI 5 5 5 3

FUZZYID 5 16 128 /

testing. The number of generated local models is presented
in Table III. For the one-dimensional problem, all methods
perform reasonably well. When the dimension is increased, the
FUZZYID has a substantial problem with the dimensionality.
The FUZZYID method failed to generate a model for a 10-D
problem. Also, the control of the number of local models is
impossible for this method. Since they use grid partitioning,
the number of local models increased exponentially with the
dimension of the data space.

An interesting observation can be made by examining the
number of generated local models. It can be seen that the
number of local models increased with the space dimen-
sion with the LOLIMOT method, while with the eGAUSS+
(κjoin = 1.2) and SUHICLUST methods the number of local
models decreased or at least remained the same. The reason for
decreasing the number of local models is in the variance of the
output that decreases with the dimension. The output variance
for the 1-D problem is 3.4, for 4-D 0.28, for 7-D 0.11, and
0.08 for the 10-D problem. The decrease of variance means
that the span of output is lower; therefore, the non-linearity
also decreases. This means that fewer local models are needed
to approximate the model.

B. Dynamic examples

Two examples are chosen for a dynamic modeling problem:
the Coupled Electrical drive example (CED) [45] and the Cas-
cade Tanks Example (TCT) [45]. As seen from previous static
examples, the FUZZYID has problems with high dimensional
examples; therefore, it is omitted from the dynamic model
testing since the regressors have higher dimensions.

1) Coupled electric drives: The coupled electric drives
system consists of two electric motors that are used to drive a
pulley by using a flexible belt. The pulley is held by a spring,
resulting in a lightly damped dynamic mode. The electric
drives can be individually controlled, allowing the tension
and the speed of the belt to be simultaneously controlled.
The goal, in this case, is to identify the function that relates
the process input, which is the sum of the voltages applied
to the motors, and the output, which is the pulley velocity
[45]. According to [46], the regressor vector in the form of
uuu(k) = [1, y(k−1), y(k−4), y(k−6), y(k−7), y(k−8), y(k−
9), u(k − 1), u(k − 4), u(k − 6)] is chosen. The space for
partitioning is comprised of inputs and outputs delayed for
1, 3, 6, and 9 samples. The training data set has 374 samples,
while the testing data set has 126 samples. The results of
the identification are presented in Table IV. In this example,
the target NRMSEL error for the HILO, SUHI, and LOLI

1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2931874, IEEE
Transactions on Fuzzy Systems

10

TABLE IV
RESULTS FOR CED

Method #LMs NRMSEL NRMSET t[s]
eGAUSS+ 4 0.1067 0.1326 < 1

LOLI 12 0.1157 0.3595 ≈ 3
LOLI C# 7 0.1194 0.3375 ≈ 1

HILO 7 0.5750 0.4250 ≈ 11
SUHI 6 0.1079 0.1666 < 1

TABLE V
RESULTS FOR TCT

Method #LMs NRMSEL NRMSET t[s]
eGAUSS+ 4 0.0428 0.0445 < 1

LOLI 7 0.0438 0.0406 ≈ 3
LOLI C# 5 0.0463 0.0517 ≈ 1

HILO 4 0.0498 0.0518 ≈ 8
SUHI 4 0.0485 0.0533 ≈ 8

methods is set to 0.12. The eGAUSS+ method reached the
threshold with only four local models and has the lowest
test NRMSE. While the HILOMOT produces good models
for static examples, it failed to produce a good model for the
presented dynamic example. The learning stopped because the
algorithm could no longer decrease the loss function.

2) Two cascaded tanks: This is the process of the liquid
level control system. It consists of two cascaded tanks with
free outlets fed by a pump. The liquid (demineralized water)
is transported by the pump to the upper of the two tanks. The
input signal to the process is the voltage applied to the pump
u(t) and the two output signals consist of measurements of the
water levels of the tanks h1 and h2. Since the outlets are open,
and since the tanks are deep with a large vertical extension,
this results in a significantly non-linear behaviour that varies
with the level of water [45]. The goal here is to identify the
level h2. According to [46], the regressor vector in the form of
uuu(k) = [1, h2(k−4), h2(k−1), h1(k−4), u(k−2), u(k−4)]
is chosen. The space for partitioning is defined as zzz(k) =
[h2(k), h2(k − 1), h1(k − 1), h1(k − 4), u(k − 1), u(k − 4)].
The training data set has 1500 samples, while the testing data
set has 1000 samples. The results of modeling are presented
in Table V. The error threshold NRMSEL for the HILO,
SUHI, LOLI, and eGAUSS+ methods is set to 0.05. In this
example, the HILOMOT produces a valid model with the same
number of local models as eGAUSS+ and SUHICLUST, with
eGAUSS+ having a slightly better test NRMSET value.

V. CONCLUSION

A new merging approach based on cluster-volume for
incrementally evolving Gaussian clustering is proposed for
achieving more efficient data stream clustering. This dynamic
cluster merging is based on the cluster volume and the
cluster covariance matrix and is suitable for very fast learning
demands in real time, because the algorithm verifies whether
the clusters that are activated with a certain level should be
merged or not. This decreases the computational demand and
the computation time, which is the major problem of known
merging approaches from the literature.

The results of comparisons show that the evolving Gaussian
model together with the proposed merging approach is able
to define the cluster partitions more reliably than well-known
multi-pass fuzzy clustering methods are, and they come much
closer to the natural number of clusters.

ACKNOWLEDGEMENT

This work has been supported by the Slovenian Research
Agency with the Research Program P2-0219.

REFERENCES

[1] Angelov P.P., and X. Zhou, “Evolving fuzzy-rule-based classifiers from
data streams”, IEEE Transactions on Fuzzy Systems, vol. 16, no. 6, pp.
1462 – 1475, 2008.

[2] Angelov P.P., E. Lughofer, and X. Zhou, “Evolving Fuzzy Classifiers
using Different Model Architectures”, Fuzzy Sets and Systems, vol. 159,
no. 23, pp. 3160 – 3182, 2008.

[3] Wang Y., L. Chen, and J.P. Mei,“Incremental Fuzzy Clustering With
Multiple Medoids for Large Data ”, IEEE Trans., on Fuzzy Systems, vol.
22, no. 6, pp. 1557 – 1568, 2014.

[4] Havens T.C., J. Bezdek, C. Leckie, L. Hall, and M. Palaniswami, “Fuzzy
c-means algorithms for very large data”, IEEE Trans. on Fuzzy Systems,
vol. 20, no. 6, pp. 1130–1146, 2012.

[5] Lughofer, E., “FLEXFIS: A Robust Incremental Learning Approach for
Evolving TakagiSugeno Fuzzy Models”, IEEE Trans. on Fuzzy Systems,
vol. 16, no. 6, pp. 1393-1410, 2008.

[6] Hall L., D.B. Goldof, “Convergence of the Single-Pass and Online Fuzzy
C-Means Algorithms”, IEEE Trans, of Fuzzy Systems, vol. 19, no. 4, pp.
792–794, 2011.

[7] Angelov P., “An approach for fuzzy rule-base adaptation using on-line
clustering”, Int. J. Approx. Reasoning, vol. 35, no. 3, pp. 275-289, 2004.

[8] Angelov P, D. Filev, and N. Kasabov, “Evolving intelligent sys-
temsmethodology and applications”, Wiley, New York, 2010.

[9] Dovžan D., and I. Škrjanc, “Recursive clustering based on a Gustafson-
Kessel algorithm”, Evolving Systems journal, vol. 2, pp. 15 – 24, 2011.

[10] Dovžan D., V. Logar, and I. Škrjanc, “Implementation of an Evolv-
ing Fuzzy Model (eFuMo) in a Monitoring System for a Waste Water
Treatment Process”, IEEE Trans. on Fuzzy Systems, vol. 23, no. 5, pp.
1761–1776, 2015.

[11] Filev D., and O. Georgieva, “An extended version of the Gustafson-
Kessel algorithm for evolving data stream clustering”, in: Evolving Intel-
ligent Systems: Methodology and Applications, Eds.: P. Angelov, D. Filev,
A. Kasabov, John Willey and Sons, IEE Press Series on Computational
Intellegence, pp. 273–300, 2010.

[12] Krishnapuram R., and J. M. Keller, “Possibilistic approach to cluster-
ing”, IEEE Trans. on Fuzzy Systems, vol.1, no. 2, pp. 98 – 100, 1993.

[13] Ojeda-Magana B., R. Ruelas, M. A. Corona-Nakamura, and D. Andina,
“An improvement to the possibilistic fuzzy c-means clustering algorithm”,
Intelligent Automation and Soft Computing, vol. 20, no. 1., pp. 585 – 592,
2006.

[14] Pal N.R., K. Pal, J. M. Keller, and J. C. Bezdek, “A possibilistic fuzzy
c-means clustering algorithm”, IEEE Trans. on Fuzzy Systems, pp. 517 –
530, vol.13, no. 4, 2005.

[15] Timm H., C. Borgelt, C. Doering, and R. Kruse, “An exten-
sion to possibilistic fuzzy cluster analysis”, Fuzzy Sets and Sys-
tems, vol. 147, no. 1., pp. 3-16, 2004.

[16] Hathaway R.J., and Y. Hu, “Density-weighted fuzzy c-means clustering”,
IEEE Trans. on Fuzzy Systems, vol. 17, no. 1, pp. 243–252, 2009.

[17] Angelov P.P., and R. Yager, “Simplified fuzzy rule-based systems
using non-parametric antecedents and relative data density”, 2011 IEEE
Workshop on Evolving and Adaptive Intelligent Systems (EAIS), pp. 62-
69, 2011.

[18] Škrjanc I., S. Ozawa, T. Ban and D. Dovžan, “Large-Scale Cyber Attacks
Monitoring using Evolving Cauchy Possibilistic Clustering”, Applied Soft
Computing, vol. 62, pp. 2833–2839, 2017.

[19] Škrjanc I., S. Blažič, E. Lughofer and D. Dovžan, “Inner Matrix
Norms in Evolving Cauchy Possibilistic Clustering for Classification and
Regression from Data Streams”, Information Sciences, vol. 478, 2018,
2018.

1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2931874, IEEE
Transactions on Fuzzy Systems

11

[20] Klančar G. and I. Škrjanc, “Evolving principal component clustering
with a low run-time complexity for LRF data mapping”, Applied Soft
Computing, vol. 35, pp. 349 - 358, 2015.

[21] Lughofer E., M. Pratama, and I. Škrjanc, “Incremental rule splitting in
generalized evolving fuzzy systems for autonomous drift compensation”,
IEEE Trans. on Fuzzy Systems, vol. 26, no. 4, pp. 1854–1865, 2018.

[22] Škrjanc I., J.A. Iglesias, A. Sanchis, D. Leite, E. Lughofer, F. Gomide,
“Evolving fuzzy and neuro-fuzzy approaches in clustering, regression,
identification, and classification : a survey”, Information sciences, ISSN
0020-0255. [Print ed.], In Press, 2019.

[23] Lughofer E. and M. Sayed-Mouchaweh, “Autonomous data stream clus-
tering implementing incremental split-and-merge techniques — towards a
plug-and-play approach”,Info Sci, vol. 204, pp. 54–79, 2015.

[24] Kaymak U., and M. Setnes, “Fuzzy Clustering With Volume Prototypes
and Adaptive Cluster Merging”, IEEE Trans. on Fuzzy Systems, vol. 10,
no. 6, pp. 705–712, 2002.

[25] Kaymak U., and R. Babuska, “Compatible cluster merging for fuzzy
modelling”, Proceedings of 1995 IEEE International Conference on Fuzzy
Systems., Yokohama, Japan, pp. 897–904 vol.2, 1995.

[26] Beringer J., E. Hüllermeier, “Online clustering of parallel data streams”,
Data Knowl. Eng., vol. 58, no. 2, pp. 180-204, 2007.

[27] Xie X.L., G. Beni, “A validity measure for fuzzy clustering”, IEEE
Trans. Pattern. Anal. Mach. Intell., vol. 13, no. 48, pp. 841-847, 1991.

[28] Hall P, Hicks Y (2005) A method to add gaussian mixture models. Tech.
rep., University of Bath, Tech. Rep., 2005.

[29] Song M, H. Wang, “Highly efficient incremental estimation of gaussian
mixture models for online data stream clustering”,In: Priddy KL (ed)
Intelligent computing: theory and applications III. In: Proceedings of the
SPIE, vol. 5803, pp. 174-183, 2005.

[30] Declercq A. and J. Piater, “Online learning of gaussian mixture modelsa
two-level approach”, In: Proceedings of the 3rd international conference
on computer vision theory and applications VISAPP, Funchal, Portugal,
pp. 605-611, 2008.

[31] Lughofer E., J.-L. Bouchot, and A. Shaker, “Online elimination of local
redundancies in evolving fuzzy systems”, Evolving Systems, no. 2, pp.
165–187, 2011.

[32] Yager R. R., “A model of participatory learning”,IEEE Trans. on
Systems, Man and Cybernetics, vol. 20, no. 5, pp. 1229–1234, 1990.

[33] Lughofer E., C. Cernuda, S. Kindermann, and M. Pratama, “Generalized
smart evolving fuzzy systems”, Evolving Systems, vol. 6, no. 4, pp. 269–
292, 2015.

[34] Soleimani-B H., C. Lucas, and B. N. Araabi, “Recursive Gath-Geva
clustering as a basis for evolving neuro-fuzzy modeling”, Evolving Systems,
vol. 1, no. 1, pp. 59–71, 2010.

[35] Kasabov N., “Evolving fuzzy neural networks for super-
vised/unsupervised online knowledge-based learning”, IEEE Trans.
on Systems Man and Cybernetics - Part B, vol. 31, no. 6, pp. 902–918,
2001.

[36] Li W., H. H. Yue, S. Valle-Cervantes, and S. J. Qin, “Recursive PCA for

adaptive process monitoring”, Journal of Process Control, vol. 10, no. 5,
pp. 471–486, 2000.

[37] Lughofer E., “A dynamic split-and-merge approach for evolving cluster
models”, Evolving Systems, vol. 3, no. 3, pp. 135–151, 2012.

[38] Nelles O., S. Sinsel and R. Isermann, “Local basis function networks for
identification of turbocharger”, IEEE UKACC Int. Conf. Control, Exeter,
pp. 7–12, UK, 1993.

[39] Hartmann B., T. Ebert, T. Fischer, J. Belz, G. Kampmann and O. Nelles,
LMNtool - Toolbox zum automatischen Trainieren lokaler Modellnetze,
22th Workshop Computational Intelligence, Dortmund, 2012.

[40] Teslić L., B. Hartmann, O. Nelles and I. Škrjanc, “Nonlinear System
Identification by GustafsonKessel Fuzzy Clustering and Supervised Local
Model Network Learning for the Drug Absorption Spectra Process”, IEEE
Trans. on Neural Networks, vol. 22, no. 12, pp. 1941–1951, 2011.

[41] Škrjanc I., “Evolving Fuzzy-Model-Based Design of Experiments With
Supervised Hierarchical Clustering”, IEEE Trans. on Fuzzy Systems, vol.
23, no. 4, pp. 861 - 871, 2014.

[42] Abonyi J., “Fuzzy Model Identification for Control”, Birkhäuser,
Boston, 2003.

[43] Friedman J.H., “Multivariate adaptive regression splines”, Ann. Statist.,
vol. 19, no. 1, pp. 1–141, 1991.

[44] Mackey M.C. and L. Glass, “Oscillations and chaos in physiological
control systems”, Science, vol. 9, pp. 197–287, 1977.

[45] Wigren T. and J. Schoukens, “Three free data sets for development and
benchmarking in nonlinear system identification”, IEEE European Control
Conference, pp. 2933-2938, 2013.

[46] Aleksovski D., Dovžan D., Džeroski S., and J. Kocijan, “A com-
parison of fuzzy identification methods on benchmark datasets”, IFAC-
PapersOnLine, vol. 49, no. 5, pp. 31 – 36, 2016.

Igor Škrjanc received the B.Sc., M.Sc., and Ph.D.
degrees in electrical engineering from the Faculty of
Electrical and Computer Engineering, University of
Ljubljana, Ljubljana, Slovenia, in 1988, 1991, and
1996, respectively.

He is currently a Professor of Automatic Control
with the Faculty of Electrical Engineering, Univer-
sity of Ljubljana, and the head of the Department
for Control Systems and Cybernetics. His main re-
search interests include intelligent, predictive control
systems, and autonomous mobile systems.

In 2008 he received the Highest Research Award of the Republic of Slovenia
for Scientific and Research Achievements, Zois Award, for outstanding re-
search results in the field of intelligent control. He also received the Humboldt
research fellowship for experienced researchers for the period between 2009
and 2011, and the JSPS research fellowship for year 2017. He is also Chair
of Excellence at University Carlos III in Madrid, Spain.

